

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline and monitoring methodology</u>
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

page 2

SECTION A. General description of project activity

A.1 Title of the <u>project activity</u>:

>>

<u>Project title</u>: Thermal Power Plant Manauara CDM Project Activity (hereafter referred to as "*TPP Manauara*").

PDD Version number: 1.

Date: November 21th, 2007.

A.2. Description of the <u>project activity</u>:

>>

The objective o *TPP Manaura* is about a construction of a Thermal Power Plant using Natural Gas as primary fuel and oil as second. But there wasn't a Natural Gas Pipeline in the begging of the project, then the first phase was about the construction and operation of a TPP, with fuel oil, more efficient than the other similar power plants connected to the same grid. The new TPP efficiency is about 42% whereas the other is about 30%. The TPP started its commercial operation on September 2006.

The *TPP Manauara* has 85.38 MW of Power Capacity Installed, actually contracted just 60 MW effectively, generating around 525,600 MWh per year considering the availability of 100% and 8,760 hours per year.

The estimated specific consumption in the first phase is about 209 kg fuel oil/MWh.

The Isolated Brazilian Electric System, predominantly thermal and mainly situated and spread on the North of the Country, serves an area of 45% of Brazilian territory and around 3% of national population, approximately 1,4 million consumers.

The project activity is located in Manaus, Amazonas. The *TPP Manauara* is located in the Isolated Brazilian System, not connected to the SIN (National Interconnected System), but connected to a local grid with 10 Power Plants in the Manaus System.

The main positive impact of the *TPP Manauara* is the reduction of the instability of the electricity supply. It will benefit all the Manaus' population and the local companies.

The Engineering Administration of Eletrobras manages the "Grupo Técnico Operacional da Região Norte (North Region Operational Technical Group)" - GTON, responsible for the Accomplishment of the Isolated Systems Operation of the North Region. Its creation, through the regulation MINFRA n^o 895, from November 29th, 1990, considers the need to assure to the consumers of the Isolated Systems of the following States: Acre, Amazonas, Pará, Rondônia, Roraima, Amapá e Mato Grosso, not pondered with the advantages offered by SIN (National Interconnected System), the electricity supply in suitable conditions of safety and quality.


```
page 3
```


Figure 1 – Thermal Power Plant Site

A.3. <u>Project participants:</u>

>>

The credit owner and Project CDM's Focal Point of *TPP Manauara*, the private company *Companhia Energética Manauara* is the author and responsible entity for all the project activities related to management, approving, registering, monitoring, measurement and reporting.

Name of Party involved (*) ((host) indicates a host Party)	Private and/or public entity(ies) project participants (*) (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)					
	Private Entity: Companhia Energética Manauara	No					
Brazil (host)	<u>Private Entity:</u> C-Trade Comercializadora de Carbono Ltda	No					
(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD							
public at the stage of validation, a Party involved may or may not have provided its <u>approval</u> . At the							

time of requesting registration, the approval by the Party(ies) involved is required.

Table 1 – Private and public parties and entities involved in the activity

Detailed information for contact with the party (ies) and with the public/private entities involved in the project activity is related in Annex 1.

page 4

This project was developed under the responsibility of *Manauara* with the support of *C-Trade Comercializadora de Carbono Ltda*. All the activities are being developed in and limited to Brazil.

The following is a brief description about the companies involved in the project:

COMPANHIA ENERGÉTICA MANAUARA

Companhia Energética Manauara is a PIE (Energy Independent Producer) since June 13^{th} 2006, according to the ANEEL Authorizative Resolution n^o 608, with the Construction and Operation of the *TPP Manauara*.

Companhia Energética Manauara is a private company with two shareholders: TEP – Termoelétrica Potiguar S.A (60%) and Petrobras Distribuidora S.A. (40%).

<u>C-TRADE COMERCIALIZADORA DE CARBONO LTDA.</u>

C-Trade is a private company created for the purpose of identifying, certifying and negotiating Carbon Credits. C-Trade develops studies and analyses aimed towards the development of greenhouse gas (GHG) emissions reduction projects. Not only the identification but also the validation and certification of CERs (Certified emission reductions) fall within the scope of these projects.

The C-Trade team is specialized in the identification and reduction development of GHG emissions that are effected directly or indirectly by each project, among these: Small Power Plants, Electric and Biomass Power Plants, Wind Power Plants, substitution of petroleum fuels, reforestation projects and landfills.

A.4. Technical description of the <u>project activity</u>:

A.4.1. Location of the project activity:

A.4.1.1.

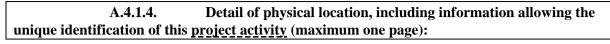
>>

Host Party(ies):

Brazil.

A.4.1.2. Region/State/Province etc.:

>>


Amazonas.

A.4.1.3. City/Town/Community etc:	
-----------------------------------	--

>> Manaus.

page 5

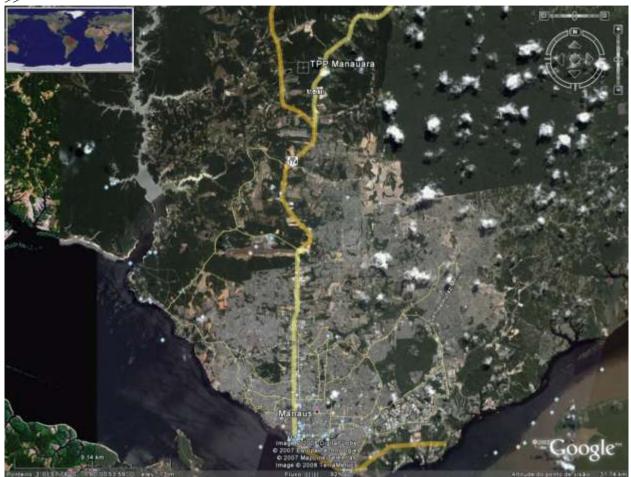


Figure2 – Location of TPP Manauara (Source: Google Earth)

The project activity is located in the North of Brazil, State of Amazonas. Manaus is an area far from the National Integrated Grid.

The Thermal Power Plant Manauara is located in the km 20 of the Highway AM10 in the Manaus City.

According to the ANEEL Empowered Resolution N° 608, of June 13th 2006, the geographical coordinates are:

- Longitude: 60° 01' 18.688''East
- Latitude: 02° 56' 27.316''South
- Altitude: 80m

A.4.2. Category(ies) of project activity:

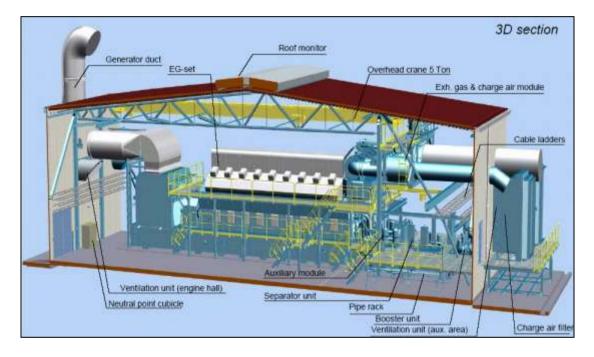
>>

Sectoral Scope 1 – Energy Industries (Non-Renewable Source)

>>

CDM – Executive Board

page 6


A.4.3. Technology to be employed by the project activity:

TPP Manauara has 5 generators made by Wärtsilä, model 18V46, to achieve 85.38 MW.

The main fuel used is fuel oil type OCA1. The efficiency of Manauara's generators is better than the thermal power plants' generators located in same grid.

The commercial operation started on September 22th, 2006.

The table below shows the Thermal Power Plant design:

See in the table below the technology employed by the project activity:

Rated power								
Engine	50/6	0 Hz	500, 514 rpm 975 kW/cyl	500, 514 rpm 1050 kW/cyl	500, 514 rpm 1155 kW/cyl			
type	Power	Plants	Marine & Power	Marine	Marine			
	Eng. KW	Gen. kW	kW	kW	KW			
6L46 8L46 9L46 12V46 16V46 18V46*	5 850 7 800 8 775 11 700 15 600 17 550	5675 7565 8510 11350 15120 17076	5 850 7 800 8 775 11 700 15 600 17 550	6 300 8 400 9 450 12 600 16 800 18 900	6 930 9 240 10 395 13 860 18 480 20 790			
* Available only for power plants and diesel electric propulsion.								
1 kW = 1.3596 hp (metric)								

Source: Cia. Energética Manauara and Wärtsilä

page 7

A.4.4 Estimated amount of emission reductions over the chosen <u>crediting period</u>:

>>

Using the ex-post emission factor of the baseline calculated presented at the item B.7.1, the complete implementation of the *TPP Manauara Project*, connected to the North Isolated Brazilian Grid (Interconnected Manaus Grid), will generate an yearly average estimated reduction of **85,348 tCO_{2e}** and a total reduction of **597,437 tCO_{2e}** during the first 7-year-period, described in the table 4 below:

Year	Estimated Annual Emission Reduction (tCO2)				
2008	85,348				
2009	85,348				
2010	85,348				
2011	85,348				
2012	85,348				
2013	85,348				
2014	85,348				
TOTAL	597,437				
Total of Crediting Year	7				
Annual Average durante the first period of					
Credit	85,348				

Table 4 – Estimation of emissions reductions of the TPP Manauara Project

A.4.5. Public funding of the project activity:

>>

There weren't any public funding on this project activity.

page 8

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

>>

The **approved baseline and monitoring methodology** of the project activity are based on the Proposed of Revision on the methodology: ACM0013 – "Consolidated baseline and monitoring methodology for new grid connected fossil fuel fired power plants using a less GHG intensive technology"

It was already used the following documents:

- "Tool for demonstration and assessment of additionality", version 4;
- "Tool to calculate project or leakage CO₂ emissions from fossil fuel combustion", version 1;

B.2 Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity:</u>

>>

The TPP Manauara follows the methodology ACM0013 applicability conditions:

- The project activity is the construction and operation of a new fossil fuel fired gridconnect electricity generation plant that uses a more efficient power generation technology than what would otherwise be used with the given fossil fuel:
 - The *TPP Manauara*'s efficiency is about 42% while the other similar plants efficiency connected to the same grid is about 30%;
- The project activity is not a co-generation power plant;
- Data on fuel consumption and electricity generation of recently constructed power plant is available;
- The identified baseline fuel was used in more than 50% of total generation by utilities in the geographical area in the last three years.
 - There is just one Hydro Power Plant connected to the same grid. All the Thermal Power Plants consumptions are of Oil.

This methodology is only applicable to new electricity generation plants. For project activities involving retrofit of existing facilities with the installation of highly efficient technologies, project proponents are encouraged to submit new methodologies. For project activities involving a switch to a less GHG intensive fossil fuel in existing power plants, project participants may use approved methodology ACM0011. For project activities involving construction and operation of a new power plant with less GHG intensive fossil fuel, project participants may use approved methodology AM0029.

page 9

B.3. Description of the sources and gases included in the project boundary									
>>									
	Source	Gas	Included?	Justification / Explanation					
	seline Power generation in baseline	CO ₂	Yes	Main emission source.					
Baseline		CH_4	No	Excluded for simplification. This is conservative.					
		N_2O	No	Excluded for simplification. This is conservative.					
	On site fuel	CO ₂	Yes	Main emission source.					
Project Activity	On-site fuel combustion in the	CH_4	No	Excluded for simplification					
	project plant	N_2O	No	Excluded for simplification.					
1			1						

Project Boundaries

The project boundaries are defined by the emissions directed or directly affected by the project activities, construction and operation. It encompasses the geographic and physical site of the hydropower generation source, which is represented by the corresponding basin to the river of each project, close to the power plant and the interconnected grid.

Brazil is a country with great territorial dimensions and it is divided in five geographical macro-areas: North, Northeast, Southeast, South and Midwest. Thus electric energy generation, and consequently, transmission are concentrated in four subsystems: South, Southeast/Midwest and Northeast. Electric energy expansion was concentrated in two specific areas:

- North (Interconnected Systems)/northeast: This region's electricity is basically supplied by the São Francisco River. There are seven hydropower plants on the river, with a total installed capacity of approximately 10.5 GW. Eighty percent of the Northern region is supplied by diesel fueled power plants;
- South/Southeast/Midwest: The majority of the electricity generated in the country is concentrated in this subsystem. These regions also concentrate 70% of GDP generation in Brazil. There are more than 50 hydropower plants generating electricity for it.
- North (Isolated Systems): It is formed by Isolated Systems and also by the Manaus Interconnected System where the *TPP Manauara* is connected.

The boundaries of the subsystems are defined by the transmission capacity. The transmission lines between the subsystems are defined by the transmission capacity. The lack of transmission lines forces the concentration of generated electricity in each of the subsystems.

page 10

B.4. Description of how <u>the baseline scenario</u> is identified and description of the identified baseline scenario:

>>

Identification of the baseline scenario

Project participants shall use the following steps to define the baseline scenario:

Identify plausible baseline scenarios

The identification of alternative baseline scenarios should include all possible realistic and credible alternatives that provide outputs or services comparable with the proposed CDM project activity (including the proposed project activity without CDM benefits), i.e., all type of power plants that could be constructed as alternative to the project activity within the grid boundary (as defined in ACM0002).

Alternatives to be analyzed should include, inter alias:

- The project activity not implemented as a CDM project;
- The construction of one or several other power plant instead of the proposed project activity, including
 - Power generation using the same fossil fuel type as in the project activity, but technologies other than that used in the project activity;
 - Power generation using fossil fuel types other than that used in the project activity;
 - Other power generation technologies, such as renewable power generation;
- Import electricity from connected grids, including the possibility of new interconnections.

The methodology is based on the approach of "Emissions from a technology that represents an economically attractive course of action, taking into account barriers to investment" and needs financial data of the project activity and its alternatives. For detailed baseline analysis, above-mentioned methodology is applied as under for the evaluation of selected project as a CDM project and calculation of emission reductions as per the baseline.

The project activity increases the installed capacity of the Southern electricity grid, thereby reducing the energy and power demand shortage. Also, it further avoids / delays the capacity addition of equivalent project size and reduces the carbon intensity of the grid mix. Therefore, the project activity needs the data/information of the grid mix regarding the baseline emissions for further evaluation of project activity as a CDM project and same data/information was collected from government/non-government organizations and other authentic sources.

The following paragraphs describe in a step by step manner how the methodology is applied in the context of the project activity.

Identification of baseline scenario for the project activity:

Baseline selection guideline as mentioned in the methodology has been applied.

Step1. Identification of alternatives to the project activity consistent with current laws and regulations

page 11

Sub-step 1a. Define alternatives to the project activity

As per the selected methodology, the project proponent is required to establish that the GHG reductions due to project activity are additional to those that would have occurred in absence of the project activity as per the 'Tool for the demonstration and assessment of additionality (Version 03)'.

Additionality of project activity is discussed further.

The project activity is under the second case, construction and operation of a Thermal Power Plant.

The alternatives for this activity are:

1) The project activity not implemented as a CDM projects

One of the points the activity was implement was considering it as a CDM project, according to the less emissions of GHG from it. The revenue from it was also important for the decision of constructing a new power plant due to the lower IRR.

2) Continuing on the old condition

As it was answered on the item above, the less environmental impacts were one of the most important regarding. The investor would let the money in the bank due to the SELIC was higher than the project IRR.

3) Power generation with natural gas

Considering a recent study of Eletronorte, the NG pipelines would be just implemented in the Manaus up to 2010. The main objective of the Project Manauara is this option. But while it is not possible to use Natural Gas as fuel it will be used the fuel oil OCA1.

4) Power generation technologies using energy sources other than natural gas

There is just one Hydro Power Plant in the Manaus Interconnected System. A Construction of a Hydro Power Plant depends on the rivers. In the Amazonas region a construction of a Hydro Power Plant is difficult considering the rivers' quality for generation and considering the environmental impacts.

5) Conditions of Construction of Interconnections Power Lines to the grid

The project studies are under development according to Eletrobras. The main point is constructing the Interconnection Power Lines with the less environmental impacts, that is why it is planned to construct the Interconnections Power Lines through the SIN (National Interconnect System) up to 2012.

page 12

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality):

>>

From the Version 4 of "Tool of assessment and demonstration of additionality":

Following are the steps necessary for the demonstration and assessment of Manauara Project additionality.

Starting date of the project activity:

The starting date of the project activity is August 3rd, 2005 (construction start), i.e., after January 1, 2000.

Evidence that the incentive from he CDM was seriously considered in the decision to proceed with the project activity:

The project sponsor started assessing the potential of the carbon market for the bid process of the Manauara Thermal Power Plant potential. Manaus Energia advising companies and specialists to assess the potential CDM revenues, during 2004.

Step 1. Identification of alternatives to the project activity consistent with current laws and regulation

Sub-step 1a. Define alternatives to the project activity:

- 1. The identified realistic alternatives to the project activity are:
- The project activity not implemented as a CDM projects
- Continuing on the old condition
- Power generation with natural gas
- Power generation technologies using energy sources other than natural gas
- Conditions of Construction of Interconnections Power Lines to the grid

Sub-step 1b. Enforcement of applicable laws and regulations:

Both the project activity and the alternative scenarios are in compliance with all regulations.

All the alternatives are observed in the Manaus interconnected System and there is no obligation of following any of the alternatives.

1b.2. The alternative(s) shall be in compliance with all mandatory applicable legal and regulatory requirements, even if these laws and regulations have objectives other than GHG reductions.

Legislation

Both alternatives are according to the Brazilian norms and regulations of the mentioned institutions above. There is not an imposition by any of these legislation and regulations obligating the construction of a Thermal or a Hydroelectric Power Plant.

page 13

Conclusions:

The project activity and the alternative scenarios follow all the Brazilian norms and regulations and them can also be observed as being tendencies of Brazilian market.

1b.3. If an alternative does not comply with all mandatory applicable legislation and regulations, then show that, based on an examination of current practice in the country or region in which the law or regulation applies, those applicable legal or regulatory requirements are systematically not enforced and that noncompliance with those requirements is widespread in the country. If this cannot be shown, then eliminate the alternative from further consideration.

Not applicable.

1b.4. If the proposed project activity is the only alternative amongst the ones considered by the project participants that is in compliance with mandatory regulations with which there is general compliance, then the proposed CDM project activity is not additional.

Not applicable

SATISFIES/PASSES – Go to Step 2

Step 2. Investment analysis

Determine whether the proposed project activity is economically or financially less attractive than at least one other alternative, identified in step 1, without the revenue from the sale of certified emission reductions (CERs). To conduct the investment analysis, use the following sub-steps:

Sub-step 2a. Determine appropriate analysis method

Determine whether to apply simple cost analysis, investment comparison analysis or benchmark analysis (sub-step 2b). If the CDM project activity generates no financial or economic benefits other than CDM related income, then apply the simple cost analysis (Option I). Otherwise, use the investment comparison analysis (Option II) or the benchmark analysis (Option III).

Benchmark analysis (Option III) will be used to analyse the TPP Manauara Project Activities.

Sub-step 2b – Option III. Apply benchmark analysis

Identify the financial indicator:

• Shareholders IRR will be used as project financial indicator and as reference to represent the standard returns in the market the Brazilian interest rate will be used, known as *SELIC* (Special System of Clearance sale and of Custody).

SELIC description

SELIC - Special System for Settlement and Custody (Sistema Especial de Liquidação e de Custódia)

SELIC is a great computerized system, under the responsibility of the Central Bank of Brazil and of the National Association of the Institutions of the Open Markets, since 1980, when it was created. The Committee of National Monetary Politics (COPOM) stipulates SELIC Target that can be defined as the average rate of the daily financings, with ballast in federal titles, select in the Selic System, which is in force for the whole period among ordinary meetings of the Committee.

The SELIC rate is cleaned in the SELIC System and obtained by the calculation of the considered and adjusted medium tax of the financing operations by one day, ballasted in federal public titles and studied in referred him system or in clearing house and clearance sale of assets. The operators of the institutions transfer SELIC, on line, the relative businesses to public titles involving banks that buy and that you/they sell those titles. Therefore, the Selic rate is the rate that remunerates the investors in the purchase business and sale of public titles.

The qualified financial institutions, such as banks, savings banks, society's brokers of titles and values furniture, distributing societies of titles are capable to make this kind of operation.

The most liquid government bond is the LFT (floating rate bonds based on the daily reference rate of the Central Bank of Brazil). As of January 2006, 37% of the domestic federal debt was in LFTs and had duration of one day (Source: Tesouro Nacional; <u>www.tesouro.fazenda.gov.br</u>). This bond rate almost follows the CDI rate, which is influenced by the SELIC rate, defined by COPOM.

The SELIC rate has been oscillating since 1999, from a minimum of 11.73% a.a. in July 2007 up to a maximum of 43.25% a.a. in January 2003 (Figure 5).

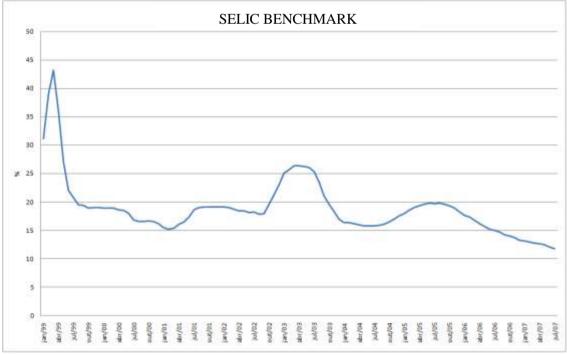


Figure 5 - SELIC rate evolution 1999 to 2007 (Source: Banco Central do Brasil)

The Manauara's project analysis was made in during 2004.

page 15

It will be considered the average from January 2002 to December 2004 for the SELIC of 16.29%.

Sub-step 2c. Calculation and comparison of financial indicators

CDM's "Tool for the demonstration and assessment of additionality" was approved after the project started operations. In order to comply with that Tool, the financial analysis shown below was performed using the original assumptions for investment, revenues from sales of electricity and operational costs for the scenario without CDM related revenues.

For the following calculations the assumptions were:

Investment	79,590,894	US\$ thousand	171,720,422	R\$ thousand
Electricity Price	215.88	US\$/MWh	464.15	R\$/MWh
Operational Costs	6.94	US\$/MWh	14.93	R\$/MWh
Administrative Costs	2,558,140	US\$/year	5,500,000	R\$/year

Table 6 - Cash Flow Assumptions – Exchange Rate 2.15 R\$/US\$

page 16

The table below show the Cash Flow, according to the assumptions on table 6:

CIA EHERGETICA MANALIARA Cash Flow - RS (Thousand)																				
Period: 2006 - 2025																				
	2006	2067	2000	2009	20.10	2011	2012	2013	2014	2015	2010	2017	2018	2019	20.20	2021	2023	2023	20.24	2025
DT - BRTIAL BALANCE	0	0.111	222	14.542	4,406	14,887	26,604	31,578	29,238	29,219	31,078	35,094	35,788	37,757	42.172	41,509	49,194	59.279	69.792	76,950
02 - OPERATIONAL ACTIVITIES		9,544	45,838	22,804	28,101	31,833	24,977	18,178	20.203	31,826	41,845	29,800	39.859	40,314	22,580	48,913	48,069	58.400	49.275	23,072
EARNINGS	0.	90,000	154,382	126,001	140,521	143,740	147.137	149,989	152,000	157,916	162,439	167,006	171,602	176,012	182,572	100,094	122,005		208,696	22,642
GUARANTEE ENERGY CONTRACTED ENERGY	0.	44,424	72,068 17,613	62,632	67,203		72,796	76,707	28,225	81,005	211,982	88,566	92,109	95,793	99,625	103,610	107,755	112,065	116,547	62,172
ENC. CONNECTION	0	42,852	64,407	58,738	16,605	17,246	56,406	55,627	55,746	55,856	56,277	36,678	22,674	17,416	58,402	55,956	261,549 691,581		61,433	13,108
OTHER REVENUES	0	274	0	.0	0	0	0	0	0.	0	0	0	0	0	0	0	0		0	0
FINANCIAL REVENUES	0	-40	0	0	0		0	0	0	0	.0	0	0	0	.0	0	0	0	0	0
EAVMENTS ELEI	0	-85,536	-109,250	-113,935	-112,480	-111,910	-122,159	-121,811	-127,6:15	-126,089	-40,497	-137,286	-121,825	-136,478	-199,993	-139,181	-145,816	-141,842	-157,421	-70,020
PERSONNEL COFTS	0	-1,925	-1,000	-1,990	-1,944		-2,199	-2,294	-2,278	-0,472	-2,617	-3,677	2,795	-2,3796	-3,012	-0,133	-3,251		-3,616	-1,699
SERVICES COSTS		-3,118	1,763	-1,880	-1.698	-1,766	-1,836	-1,910	1,7996	-2,065	1,148	-2,334	-2,323	-2,416	-2,613	-2,613	2,718	12,3427	-2,943	-1,299
MATERIAL COSTS	0	-132	-42	-65	-6%	-72	-25	-78	-81	-84	-88	-91	-95	-99	- 103	-107	-111	-115	- 120	-54
GENERAL COSTS OPERATIONAL EXPENSES	0	-1,933	-1,860	-3,730	-1,915	-1,971	-25,030	-2,091	-2,155	-3,221	-2,290	-2,362	-2,406	-2,514	-2,594	-2,670	-3,242		-3,474	-1,523
TARES		-26,369	29,353		-31,036	11,881	-35,124	-36,203	-37,430	38,704	-40,067	-41,476	42,817	-84,488	-46,101	47,761	48,483		63,228	-22,787
IMPJ / CSLL	0	-5,188	-3,405	-3,033	-5,287	-5,682	-5,658	-6,025	-6,220	-6,422	-6,639	-6,864	-7,093	-7,338	7,603	-7,868	-4,624	-8,407	-4,547	-4,336
02 - INVESTMENT ACTIVITIES	0	3,280	. 0	-24,363				0	0	0	0	0	. 0	0		0	÷.			
INVESTIMENTS CAPITAL INPUT	0	-410 4,230	0		0	0	0	0	0	0	0	0	0	0 10	0 0	0	0	0	0	0
04 - FINANCING ACTIVITIES	0	-19,213	-30,718	-8,637	-17,620	-20,115	-20,003	-20,518	-26,282	-29,968	-37,028	- 29,106	-37,890	-35,898	-23,244	-41,228	-37,984	-47,953	-42,117	-49,519
LOANS AMORTIZATION - BASA ROTATINE	0	19,191	4,620	27,436	0	0	0	0	0	0	0	0	0 11	0		0	0	0	0	
AMORTIZATION - PDA	1		-3.369	-1,145	-5,485	-5,855	8,248	-6,666	-7,112	-7,585	-8.097	-8.640	-9,219	-9,835	-35,493	-11,196	-11.545	-12,748	-13.600	-35,155
AMORTIZATION - FNO	<u>0</u>	-581		-2,527	-3,527	-2,527	-3,527	-3,527	-3,527	-0.427	-3,527	-3,527	-3,527	-1,176	D	0	0	0	0	0
AMORTIZATION - FNO NATURAL GALCONVERSION	0	0	0	-1,211	-2,492	-2,252	-2,022	-1,766	-1,531	-1,291	-1,05#	-763	-629	-329	-92	- 0	0	ú	0	. 0
AMORTIZATION - FONTE USINA BASA		0	Starson B				0		0		0	. 0	7 0	0	n	0				1.8
AMORTIZATION - PONTE MIDDLE TERM AMORTIZATION - GAS CONVERSION BASA	0	-20	-5,195	-9,765	9,798	9,566	9,788	-472	0	8	0	0	0	0			0	0	6	S 83
AMORTIZATION - BR	D	623	-641	0	0	0	0	0	0	õ	0	0		0	D	ō	ő	0	.0	0
AMORTIZATION - MUTHAL	0	-10,019	0	i (0				0	- 0	D.	0				п	-0	0			
HATEREST - PDA	0	0	-1,172		-1,591	-1,600	-1,607	-1,599	-1,587	-1,567	1,942	-1,497	-1,443	-1,376	1,297	-1,193	1,074	-934	-772	579
INTEREST - FNO INTEREST - FNO NATURAL GAS CONVERSION	0	-1,583	-3,651	-3,306	2,972	-2,637	-2,008	-1,967	-1,632	-1,297	-965	-6.28	-293	-2,530	-2,100	0	0	0	8	0
INTEREST - PONTE LISINA BASA		-17,947			6	-2,530	- 0	0	0	0	0	-2,419	a contract	-2,030	11		ő	ä		
INTEREST - FONTE MIDDLE TERM		0	3,711	3,185	2,313	1,437	-593	-6	0		.0	0	0	п	11	0	0			
INTEREST - GAS CONVERSION BASA	9	-105		-347	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	. 0
PATEREST - DR	0	-30	-21	0	0	0	- 10	0	0	8	0	.0	0	0	0	0	0	0		
INTEREST - MUTUAL IDTHER FINANCING	0	-0,945 -2,949	at inter	-143	0	842		-996	-922	-100 6	-866	0.974	.937	-984	-1,117	100	1,000		-1,083	506
DWIENDS	0	0	0		0	-3,558	-4,421	-1,028	-7,640	-11,262	-18,447	-10,758	+18,101	-19,675	-8,136	27,677	-23,930		-26,062	-7,278
DS - CASH TOTAL GENERATION	6,111	-5,889	14,320	-10,136	10,481	11,717	4,974	-3,340	-19	1,858	4,017	494	1,969	8,416	-064	7,085	10,085	10,513	7,157	-25,897
06 - FINAL BALANCE	6,111	222	14,542	4,406	14,887	0.000000	31,578	29,238	29,219	31,070	35,094	35,788	37,757	42,172	41,509	49,194	59,279		76,950	51,053
		-5,889	14,320	-10,136	10,481	16,279	9,596	-1,345	7,421	10,120	22,464	11,462	51,020	24,090	7,473	35,562	34,015	43,817	33,820	-16,621
	NEV - RS T	Chousand H GENERAT	NON.																	
	TARA	13.60%		12.008	16.00%															
		<u>R\$ 21,178</u>	55,23,885	15,23,095	15.18,745															
	NPY - RS T	housed																		
	BASE: INIT	13.60%			16.00%															
	(AAA		15 39,922		15 20,792															
	within an			-																
2005	INITIAL INI 2006	2007	29,092	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	20.20	2021	2072	2023	2024	20.75
-29,993		-6,329		-5,000	0	0,558	4,421	1,028	7,640	11,262	18,447	10,768	19,101	19,675	8,126	27,877	22,930		20,662	9,275

Table 7 - The 20 year analysis period corresponds to the average length of analysis in the electric sector.

Results:

page 17

INTERNAL RATE OF RETURN (IRR)	13.45%
SELIC (AVERAGE OF 2002-2004)	19.57%
DIFFERENCE	-6.12%

Table 8 - Project Results IRR x Benchmark

The cash flow above was made on June 2007. According to the results the TPP Manauara, the Shareholders IRR was under the benchmark SELIC. The difference between them was about 3%, considering that the average of the SELIC in the period between 2002 and 2004 was about 16%.

This shows that without CER revenues, the project would reach lower rates of return than the benchmark rate, concluding that:

• Sub-step 2.c – 8b: The financial benchmark, if Option III (benchmark analysis) is used. If the CDM project activity has a less favourable indicator (e.g. lower IRR) than the benchmark, then the CDM project activity *cannot be considered as financially attractive*.

page 18

Sub-step 2d. Sensitivity analysis

The three main variables that might affect the project's finance are:

- Electricity revenues
- Operational Costs
- Administrative costs

Even when increasing the electricity revenues 10% over and decreasing the operational and administrative costs 10% down the IRR achieves just 15%.

According to the sensitivity analysis the CDM project are unlikely to be financially attractive due to its IRR are lower than benchmark. The average SELIC for the period (Jan/2002 – Dec/2004) was 19.57%.

According to the Addicionality Tool, the expected outcome from the step 2 is the follow:

"If after the sensitivity analysis is concluded that the proposed CDM project activity is unlike to be the most financially attractive (as per step 2c -8a) or is unlikely to be financially attractive (as per step 2c - 8b), <u>then proceed to Step 4</u> (Common practice analysis). If the project participants so wish, they may apply the step 3 (Barrier Analysis) as well."

SATISFIED/PASS – Proceed to Step 4

Step 4. Common practice analysis

Sub-step 4a. Analyze other activities similar to the proposed project activity:

There were similar activities to *TPP Manauara* but they were less efficient due to the technology. They have an higher specific consumption than *TPP Manauara*.

There were 10 Thermal Power Plants connected to the grid as July 2005 and the average of efficiency was around 30%, while TPP Manaura efficiency is around 42%, according to the calculation in the item B.6.3.

Sub-step 4b. Discuss any similar options that are occurring:

There weren't Thermal Power Plants being constructed in the begging of the project. There were just studies of new Thermal Power Plants.

The risks and barriers of the projects is obtaining financing from the Brazilian banks. Project feasibility requires a PPA contract with a utility company, but the utilities do not have the incentives or motivation to buy electricity directly from independent power producers.

The TPP Manauara had difficulties in the agreements with FDA (Amazonia Development Fund) and FNO (Constitutional North Fund). And even with the agreements signed, the *TPP Manauara* had to wait more time than the expected to receive the money. That was one of the risks and one of the reasons why the IRR was lower than the initially expected.

SATISFIED/PASS – Project is ADDITIONAL

page 19

B.6. Emission reductions:

B.6.1. Explanation of methodological choices:

>>

Project activity adopted the procedures mentioned in the approved methodology (ACM0013) to calculate project emissions, baseline emissions, leakage emissions and emission reductions.

The procedures used for calculating these emissions are described below, according to the ACM0013:

Baseline emissions:

Baseline emissions are calculated by multiplying the electricity generated in the project plant $(EG_{PJ,y})$ with a baseline CO₂ emission factor $(EF_{BL,CO2,y})$, as follows:

$$BE_y = EG_{PJ,y} \times EF_{BL,CO2,y}$$
 (1)

Where:

- BE_y : baseline emissions in year y (tCO2)
- $EG_{PJ,y}$ is the net quantity of electricity generated in the project plant in year y (MWh)
- $EF_{BL,CO2,y}$ is the baseline emission factor in year y (tCO2/MWh)

 $EF_{BL,CO2}$ will be determined using the lower value between the emission factor of the technology and fuel type that has been identified as the most likely baseline scenario and a benchmark emission factor determined based on the performance of the top 15% power plants that use the same fuel as the project plant and any technology available in the geographical area as defined in Step 2 below.

Project participants shall use for $EF_{BL,CO2,y}$ the lowest value among the following two options:

Option 1: The emission factor of the technology and fuel identified as the most likely baseline scenario under "Identification of the baseline scenario" section above, and calculated as follows:

$$EF_{BL,CO2,y} = \frac{MIN(EF_{FF,BL,CO2,y}; EF_{FF,PJ,CO2,y})}{\eta_{BL}} \times 3.6 \text{ GJ/MWh}$$
(2)

Where:

- $EF_{BL,CO2,y}$ is the baseline emission factor in year y (tCO2/MWh)
- EF_{FF,BL,CO2,y} is the CO2 baseline emission factor of the baseline fossil fuel type that has been identified as the most likely baseline scenario (tCO2 / Mass or volume unit)
- EF_{FF,PJ,CO2,y} is the average CO2 emission factor of the fossil fuel type used in the project plant in year *y* (tCO2 / Mass or volume unit)
- η_{BL} is the energy efficiency of the power generation technology that has been identified as the most likely baseline scenario

Option 2: The average emissions intensity of all power plants j, corresponding to the power plants whose performance is among the top 15 % of their category, as follows:

$$EF_{BL,CO2,y} = \frac{\sum_{j} FC_{j,x} * NCV_{j,x} * EF_{CO2,j,x}}{\sum_{i} EG_{j,x}}$$

page 20

• $EF_{BL,CO2,y}$ is the baseline emission factor in year y (tCO2/MWh)

(3)

- $FC_{j,x}$ is the amount of fuel consumed by power plant *j* in year *x* (Mass or volume unit)
- NCV_{j,x} is the net calorific value of the fossil fuel type consumed by power plant j in year x (GJ / Mass or volume unit)
- EF_{CO2,j,x} is the CO2 emission factor of the fossil fuel type consumed by power plant *j* in year *x* (tCO2 / Mass or volume unit)
- $EG_{j,x}$ is the net electricity generated and delivered to the grid by power plant j in year x
- x is the most recent year prior to the start of the project activity for which data is available
- j the top 15% performing power plants (excluding cogeneration plants and including power plants registered as CDM project activities), as identified below, among all power plants in a defined geographical area that have a similar size, are operated at similar load and use the same fuel type as the project activity

NOTE: that in case of option 2, *EBBL*,*CO2*,*y* is not monitored annually but only calculated once at the start of the crediting period and updated at the renewal of a crediting period.

For determination of the top 15% performer power plants *j*, the following step-wise approach is used:

Step 1: Definition of similar plants to the project activity

- The sample group of similar power plants should consist of all power plants (except for cogeneration power plants) that use the same fossil fuel type as the project activity, where fuel types are defined in the following categories:
 - Coal
 - Oils (e.g. diesel, kerosene, residual oil)
 - Natural gas;
- That have been constructed in the previous five years;
- That have a comparable size to the project activity, defined as the range from 50% to 150% of the rated capacity of the project plant;
- That are operated in the same load category, i.e. at peak load (defined as a load factor of less than 3,000 hours per year) or base load (defined as a load factor of more than 3,000 hours per year) as the project activity; and
- That has operated (supplied electricity to the grid) in the year prior to the start of the project activity.

As the Manaus Interconnected System has no Thermal Power Plants constructed in the previous five years (considering the moment of analysis – July 2006) it will be considered all the Power Plants connected to that grid which are similar considering the other items.

page 21

Step 2: Definition of the geographical area

The geographical area to identify similar power plants should be chosen in a manner that the total number of power plants "N" in the sample group comprises at least 10 plants. As a default, the grid3 to which the project plant will be connected should be used. If the number of similar plants, as defined in Step 1, within the grid boundary is less than 10, the geographical area should be extended to the country. If the number of similar plants is still less than 10, the geographical area should be extended by including all neighboring non-Annex I countries. If the number remains to be less than 10, all non-Annex I countries in the continent should be considered.

If the necessary data on power plants of the sample group in the relevant geographical area are not available, or if there are less than 10 similar power plants in all non-Annex I countries in the continent, then data from power plants annex I or OECD countries can be used instead.

The geographical area is the Manaus Interconnected System. See the annex B for more details.

Step 3: Identification of the sample group

Identify all power plants n that are to be included in the sample group. Determine the total number "N" of all identified power plants that use the same fuel as the project plant and any technology available within the geographical area, as defined in Step 2 above.

The sample group should also include all power plants within the geographical area registered as CDM project activities, which meet the criteria defined in Step 1 above.

As the Power Plants connected through the Manaus System are few all the Power Plants will be considered to the calculations.

Step 4: Determination of the plant efficiencies

Calculate the operational efficiency of each power plant n identified in the previous step. The most recent one-year data available shall be used. The operational efficiency of each power plant n in the sample group is calculated as follows:

$$\eta_{n,x} = \frac{EG_{n,x}}{FC_{n,x} * NCV_{n,x} * 277.8}$$
(4)

Where:

- $EG_{n,x}$ is the net electricity generated and delivered to the grid by the power plant *n* in the year *x* (MWh)
- $FC_{n,x}$ is the quantity of fuel consumed in the power plant *n* in year *x* (Mass or volume unit)
- NCV_{n,x}, is the net calorific value of the fuel type fired in power plant *n* in year *y* (GJ / mass or volume unit)
- 277.8 is a conversion factor from TJ to MWh
- n are all power plants in the defined geographical area that have a similar size, are operated at similar load and use the same fuel types as the project activity
- x is the most recent year prior to the start of the project activity for which data are available

Step 5: Identification of the top 15% performer plants j

page 22

Sort the sample group of N plants from the power plants with the highest to the lowest operational efficiency. Identify the top 15% performer plants j as the plants with the 1st to Jth highest operational efficiency, where the J (the total number of plants j) is calculated as the product of N (the total number of plants n identified in step 3) and 15%, rounded down if it is decimal.4 If the generation of all identified plants j (the top 15% performers) is less than 15% of the total generation of all plants n (the whole sample group), then the number of plants j included in the top 15% performer group should be enlarged until the group represents at least 15% of total generation of all plants n.

All Steps should be documented transparently, including a list of the plants identified in Steps 3 and 5, as well as relevant data on the fuel consumption and electricity generation of all identified power plants.

As the Manaus Interconnected System had just 10 Thermal Power Plants in December 2005, the average of the thermal power plants' efficiency was considered to calculate the η_{BL} .

Leakage

No leakage emissions are to be considered according to the methodology.

Project Emissions:

The procedures used for calculating these emissions are described below, according to the "Tool to calculate project or leakage CO2 emissions from fossil fuel combustion":

$$PE_{FC, j, y} = \sum_{i} FC_{i, j, y} \times COEF_{i, y}$$
(6)

Where:

- *PE_{FC,j,y}* are the CO₂ emissions from fossil fuel combustion in process *j* during the year *y* (tCO₂ /yr);
- *FC*_{*i,j,y*} is the quantity of fuel type *i* combusted in process *j* during the year *y* (mass or volume unit/yr);
- $COEF_{i,y}$ is the CO₂ emission coefficient of fuel type *i* in year *y* (tCO₂/mass or volume unit);
- *i* are the fuel types combusted in process *j* during the year *y*.

The CO₂ emission coefficient $COEF_{i,y}$ can be calculated following two procedures, depending on the available data on the fossil fuel type *i*, as follows:

Option A: The CO₂ emission coefficient $COEF_{i,y}$ is calculated based on the chemical composition of the fossil fuel type *i*, using the following approach:

If $FC_{i,j,y}$ is measured in a mass unit: COEF_{i,y} = $W_{C,i,y} \times 44/12_{(7)}$

If $FC_{i,j,y}$ is measured in a volume unit: $COEF_{i,y} = W_{C,i,y} \times \rho_{i,y} \times 44/12$ (8) Where:

• COEFi,y is the CO2 emission coefficient of fuel type i (tCO2 / mass or volume unit);

page 23

EXFCCC

- wC,i,y is the weighted average mass fraction of carbon in fuel type i in year y (tC / mass unit of the fuel);
- pi,y is the weighted average density of fuel type i in year y (mass unit / volume unit of the fuel);
- i are the fuel types combusted in process j during the year y.

Option B: The CO2 emission coefficient COEFi,y is calculated based on net calorific value and CO2 emission factor of the fuel type i, as follows:

$$\text{COEF}_{i,y} = \text{NCV}_{i,y} \times \text{EF}_{\text{CO2},i,y}$$
(9)

Where:

- COEFi,y is the CO2 emission coefficient of fuel type i in year y
- (tCO2 / mass or volume unit);
- NCVi, y is the weighted average net calorific value of the fuel type i in year y (GJ/mass or volume unit);
- EFCO2, i, y is the weighted average CO2 emission factor of fuel type i in year y (tCO2/GJ);
- i are the fuel types combusted in process j during the year y.

Option A should be the preferred approach, if the necessary data is available.

Emission reductions

To calculate the emission reductions the project participant shall apply the following equation: Where:

 $ER_y = BE_y - PE_y$ (5)

- ERy are the emission reductions in year *y* (tCO2)
- BEy are the baseline emissions in year *y* (tCO2)
- PEy are the project emissions in year *y* (tCO2)

B.6.2. Data and parameters that are available at validation:

CDM – Executive Board

page 24

Data / Parameter:	NCV _v
Data unit:	GJ/kg
Description:	Net Calorific Value
Source of data used:	MME (Mines and Energy Ministry)
Value applied:	0.040
Justification of the	
choice of data or	
description of	
measurement methods	
and procedures	
actually applied :	
Any comment:	

Data / Parameter:	EF _{CO2,f,v}
Data unit:	tCO2/GJ
Description:	Emission Factor of fuel oil
Source of data used:	IPCC
Value applied:	0.077
Justification of the	
choice of data or	
description of	
measurement methods	
and procedures	
actually applied :	
Any comment:	

Data / Parameter:	OXIDf
Data unit:	
Description:	Oxidation factor of fuel oil
Source of data used:	IPCC
Value applied:	0.99
Justification of the	
choice of data or	
description of	
measurement methods	
and procedures	
actually applied :	
Any comment:	

page 25

Data / Parameter:	η_{BL}
Data unit:	%
Description:	Baseline Efficiency of the Thermal Power Plants
Source of data used:	Estimated according to the Eletrobras Reports.
Value applied:	32.87
Justification of the	Estimated according to the average of the efficiency of the Thermal Power
choice of data or	Plants of the grid.
description of	
measurement methods	
and procedures	
actually applied :	
Any comment:	

Data / Parameter:	COEF _{BL}
Data unit:	tCO2/GJ
Description:	Emission factor of fuel oil
Source of data used:	IPCC
Value applied:	0.074
Justification of the	
choice of data or	
description of	
measurement methods	
and procedures	
actually applied :	
Any comment:	

Data / Parameter:	EG _{PJ,y}
Data unit:	MWh
Description:	Estimated Yearly Electricity Generation
Source of data used:	Eletrobras
Value applied:	525.600
Justification of the	
choice of data or	
description of	
measurement methods	
and procedures	
actually applied :	
Any comment:	

page 26

B.6.3 Ex-ante calculation of emission reductions:

>>

- Expected Fuel Consumption: 109,805.4 ton fuel oil/year.
- Expected Energy Generation: 525,600 MWh/year.
- Specific Consumption: 0.209 ton /MWh (according Contract with ANEEL).

Project Emission:

According to the Formulas (6) and (9) from this PDD, the project emissions are the following:

(9) $COEF_{i,j} = NCV_{i,j} \times EF_{CO2,i,j} = 3.108 \text{ tCO2/ton}$ NCV_{i,j} = 40,1514 GJ/ton $EF_{CO2,i,j} = 0,0774 \text{ tCO2/GJ}$

(6) $PE_{FC,j,y} = FC_{i,j,y} \times COEF_{i,j} = 341,244 \text{ tCO2/year}$ FC_{i,j,y} = 109,805.4 ton/year COEF_{i,j} = 3.108 tCO2/ton

Baseline Emission:

The Thermal Power Plant Manauara started operation on September 2006. So it will be analyzed the three years before 2006 to calculate the Efficiency and Baseline Emission Factor. The TPPs' fuels are: fuel oil and diesel. As the Carbon Content Factor of them is closer both of them will be used for the calculation.

According to the Grid Profile and the analysis in the Annex 2, the Thermal Power Plants had the following fuel consumption and electricity generation:

Fuel Consumption						
TYPE	NAME	FUEL TYPE	UNIT	2003	2004	2005
HPP	Balbina	hydro		-	-	-
TPP	Aparecida	diesel	m3	207,010	121,277	234,153
TPP	Mauá	fuel oil	ton	153,115	189,833	189,238
TPP	Electron	diesel	m3	58,302	33,379	6,796
TPP	PIE El Paso A	diesel	m3	90,299	100,138	85,561
TPP	PIE El Paso B	diesel	m3	267,135	271,047	294,861
TPP	PIE El Paso D	diesel	m3	203,276	168,653	166,510
TPP	PIE El Paso W	fuel oil	ton	231,466	222,962	229,099
TPP	Cidade Nova	diesel	m3	-	17,322	15,768
TPP	São José	diesel	m3	-	64,958	39,420
TPP	Flores	diesel	m3	-	-	70,562

• TPP (Thermal Power Plant)

• HPP (Hydropower Plant)

page 27

				Electricity Gen	eration					
TYPE	NAME	LINIT	2003	2004	2005		UW/T	2003	2004	2005
HPP	Balbina	MWaverage	82.70	100.10	86.60	1	MWh/year			
TPP	Aparecida	MWaverage	67.50	40.60	83.50		MWh/year	591,300.00	355,656.00	731,460.00
TPP	Mauá	MWaverage	49.90	65.50	65.50		MWh/year	437,124.00	573,780.00	573,780.00
TPP	Electron	MWVaverage	17.50	10.00	2.00		MWh/year	153,300.00	87,600.00	17,520.00
TPP	PIE El Paso A	MWaverage .	27.10	30.00	25.70		MWh/year	237,396.00	267,800.00	225,132.00
TPP	PIE El Paso B	MW/average	80.20	81.20	88.60		MWh/year	702,552.00	711, 312.00	776,136.00
TPP	PIE El Paso D	MWaverage	66.30	60.00	63.40		MWh/year	580,788.00	525,600.00	555,384.00
TPP	PIE El Paso W	MW/average	120,10	120.90	127.60	1 (MWh/year	1,052,075.00	1,059,084.00	1,117,776.00
TPP	G dade Nova	MWaverage	(a.)	6.80	6.70		MWh/year		59,568.00	58,692.00
TPP	São José	MWaverage		25.50	16.70		MWh/year		223, 380.00	146,292.00
TPP	Flores	MWaverage	(a.)		29.80		MWh/year		· · · · · · · · · · · · · · · · · · ·	261,048.00
280	Manager A.	400000000000000000000000000000000000000			2-0100-	Total.	MWh/year	3,754,536.00	3,858,780.08	4,463,220.00

• TPP (Thermal Power Plant)

HPP (Hydropower Plant)

Resulting in an average Efficiency of:

TYPE	NAME	2005		
HPP	Balbina			
TPP	Aparecida	31.66%		
TPP	Mauá	27.18%		
TPP	Electron	26.13%		
TPP	PIE El Paso A	26.67%		
TPP	PIE El Paso B	26.68%		
TPP	PIE El Paso D	33.80%		
TPP	PIE El Paso W	43.74%		
TPP	Cidade Nova	37.72%		
TPP	São José	37.61%		
TPP	Flores	37.49%		
	AVERAGE	32.87%		
TPP (Thermal Power Plant)				

HPP (Hydropower Plant)

The Baseline Efficiency value is 32.87%, the average of 2005.

The calculation above was done using the Formula (4) from this PDD. η_{BL} = 32.87%

Option 1:

$$\begin{split} EF_{FF,BL,CO2,y} &= 0.0741 \ tCO2/GJ \\ EF_{FF,PJ,CO2,y} &= \ 0.0774 \ tCO2/GJ \end{split}$$

From the Formula (2) the result is:

$$\begin{split} EF_{BL,CO2,y} &= MIN \; (EF_{FF,BL,CO2,y;} \; EF_{FF,PJ,CO2,y}) \; x \; 3.6 \; GJ/MWh \div \eta_{BL} \\ EF_{BL,CO2,y} &= 0.0741 \; x \; 3.6 \div 0.3287 = 0.8116 \; tCO2/MWh \end{split}$$

Option 2:

 $EF_{BL,CO2,y} = 0.8134 \text{ tCO2/MWh}$

It must be considered the lower number between the Option 1 and Option 2.

page 28

 $EF_{BL,CO2,y} = 0.8116 \text{ tCO2/MWh}$

From the Formula (1) of this PDD the BE_y is:

$$\begin{split} \textbf{BEy} &= \textbf{EG}_{\textbf{PJ}, \textbf{y}} \textbf{x} \textbf{EF}_{\textbf{BL}, \textbf{CO2}, \textbf{y}} = \textbf{426, 592 tCO2/year.} \\ & \textbf{EG}_{\textbf{PJ}, \textbf{y}} = 525,600 \text{ MWh/year} \\ & \textbf{EF}_{\textbf{BL}, \textbf{CO2}, \textbf{y}} = 0.8116 \text{ tCO2/MWh} \end{split}$$

Considering the Formula (5) the CERs resulting from the 1st Phase of the Project are:

Emission Reductions:

ERy = BEy - PEy = 426,592 - 341,244 = 85,348 tCO2/year BEy = 426,592 tCO2/year PEy = 341,244 tCO2/year

B.6.4 Summary of the ex-ante estimation of emission reductions:

Year	Estimation of project activity emissions	Estimation of baseline emissions	Estimation of leakage	Estimation of overall emission reductions
	(tones of CO ₂ e)	(tones of CO ₂ e)	(tones of CO_2e)	(tones of CO ₂ e)
2008	341,244	426,592	0	85,348
2009	341,244	426,592	0	85,348
2010	341,244	426,592	0	85,348
2011	341,244	426,592	0	85,348
2012	341,244	426,592	0	85,348
2013	341,244	426,592	0	85,348
2014	341,244	426,592	0	85,348
Total (tones of CO2e)	2,388,711	2,986,147	0	597,437

page 29

CDM – Executive Board

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1 Data and parameters monitored:

Data / Parameter:	EG _{PJ,y}
Data unit:	MWh
Description:	Estimated Yearly Electricity Generation
Source of data to be	Eletrobras
used:	
Value of data applied	525,600
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Measured by Manaus Energia with metering devices and with the Eletrobras
measurement methods	procedures.
and procedures to be	
applied:	
QA/QC procedures to	
be applied:	
Any comment:	

Data / Parameter:	FC _{i,j,y}
Data unit:	tons
Description:	Estimated Yearly Fuel Consumption
Source of data to be	BR Distribuidora invoices
used:	
Value of data applied	109,850
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Delivered fuel or natural gas consumption.
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	
be applied:	
Any comment:	

B.7.2 Description of the monitoring plan:

>>

The project activity meets the methodology applicability criteria as under:

- The project activity is the construction and operation of a new Thermal Power Plant, more efficient than the other similar power plants connected the same grid, and
- A fuel substitution from Fuel Oil to Natural Gas.
- The geographical/ physical boundaries of the baseline grid can be clearly identified and information pertaining to the grid and estimating baseline emissions is publicly available.
- Fuels are sufficiently available in the region or country, e.g. future natural gas based power capacity additions, comparable in size to the project activity, are not constrained by the use of natural gas in the project activity.

All the data to be monitored to estimate project, baseline and leakage emissions for verification and issuance will be kept for two years after the end of the crediting period or the last issuance of CERs for the project activity, whichever occurs later.

It will be followed the procedures to monitor the electricity and fuel quantity. The SCD (Operational Data Collection System) and further documentation of Eletrobras will be used to read all the necessary data.

For the fuel monitoring it will be used the invoices of the fuel oil suppliers.

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

>>

Date of completion of baseline study and monitoring methodology: November 21th 2007

C-Trade Comercializadora de Carbono has determined the baseline and monitoring methodology for the project activity. The entity is a project participant listed in Annex-I where the contact information has also been provided.

page 31

SECTION C. Duration of the project activity / crediting period

C.1 Duration of the project activity:

C.1.1. <u>Starting date of the project activity</u>:

>>

22/September/2006

C.1.2. Expected operational lifetime of the project activity:

>>

30 years

C.2 Choice of the <u>crediting period</u> and related information:

C.2.1. <u>Renewable crediting period</u>

C.2.1.1. Starting date of the first <u>crediting period</u>:

>>

01/January/2008

C.2.1.2.	Length of the first <u>crediting period</u> :

>>

7 years.

C.2.2.	Fixed crediting	g period:
	C.2.2.1.	Starting date:

>>

Not applicable.

	(C.2.2.2. I	Length:
--	---	------------	---------

>>

Not applicable.

page 32

SECTION D. Environmental impacts

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

>>

The growing global concern on sustainable use of resources is driving a requirement for more sensitive environmental management practices. Increasingly this is being reflected in countries' policies and legislation. In Brazil the situation is not different. Environmental rules and licensing policies are very demanding in line with the best international practices.

In Brazil, the sponsor of any project that involves construction, installation, expansion or operation of any polluting or potentially polluting activity or any other capable to cause environmental degradation is obliged to secure a series of permits from the relevant environmental agency (federal and/or local, depending on the project).

In order to obtain all environmental licenses every the process starts with a previous analysis (preliminary studies) by the local environmental department.

After that, if the project is considered environmentally feasible, the sponsors have to prepare the Environmental Assessment, which is basically composed by the following information:

- Reasons for project implementation;
- Project description, including information regarding the reservoir;
- Preliminary Environmental Diagnosis, mentioning main biotic, and anthropic aspects;
- Preliminary estimation of project impacts; e
- Possible mitigating measures and environmental programs.

The result of those assessments is the Preliminary License (LP), which reflects the environmental local agency positive understanding about the environmental project concepts.

Following the history of Licenses:

Previous License (LP)

- Previous License (LP) by IPAAM for the Transmission Lines N^o 144/05
 - o Signed: October 9th 2005
 - Validity: 365 days
- Previous License (LP) by IPAAM for the Plant N^o 144/05
 - Signed: October 9th 2005
 - Validity: 365 days

Installation License (LI)

- Installation License (LI) by IPAAM for the Plant N^o 138/05
 - Signed: November 28th 2005
 - Validity: 60 days

page 33

- Installation License (LI) by IPAAM for the Plant N° 138/05–01
 - Signed: February 6th 2006
 - Validity: 60 days
- Installation License (LI) by IPAAM for the Plant N° 138/05–02
 - Signed: April 26th 2006
 - Validity: 60 days
- Installation License (LI) by IPAAM for the Transmission Lines N° 074/06
 - Signed: May 4th 2006
 - Validity: 365 days

Operation License (LO)

- Operation License (LO) by IPAAM for the Plant N° 262/06–01 Electricity Generation
 - Signed: August 26th 2006
 - Validity: 365 days
- Operation License (LO) by IPAAM for the Plant N° 369/06 Electricity Transmission
 Signed: August 26th 2006
 - Validity: 365 days
- Operation License (LO) by IPAAM for the Plant N° 262/06–02 Electricity Generation
 - Signed: October 25th 2007
 - Validity: 365 days
- Operation License (LO) by IPAAM for the Plant N° 369/06–01 Electricity Transmission
 Signed: August 14th 2007
 - o Validity: 365 days

D.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

>>

The environmental impact of the project activity is considered small.

The forecast is that the project activity will contribute to improve the provisioning of electricity and, at the same time, it will contribute to the sustainability environmental, social and economical.

The project has all of the environmental licenses and necessary installation satisfying several demands of the state environmental legislation - IPAAM (State Foundation of Environmental Protection of Amazonas) - and of the Brazilian electric section - ANEEL (National Agency of Electric power).

In the processes of licenses obtainment, reports were prepared containing the investigation of the following aspects, among others:

• Impacts in the climate and in the quality of the air.

page 34

- Geological impacts and in the soil.
- Impacts in the hydrology (underground water and of surface).
- Impacts in the flora and in the animal life.
- Socioeconomic (necessary infrastructure, legal and institutional aspects, etc.).

SECTION E. Stakeholders' comments

E.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

In addition to the stakeholders' comments, solicited for obtaining environmental licenses, the Brazilian Designated National Authority, "*Comissão Interministerial de Mudanças Globais do Clima*", solicits stakeholders' comments based on a translated version of the PDD and the validation report emitted by an authorized DOE according to Resolution No. 1, issued on September 11th, 2003, in order to provide the letter of approval.

The project proponents sent these letters to the stakeholders to solicit their comments while the project PDD remained open to comments during the validation stage on the CDM – Executive Board's website (<u>http://cdm.unfccc.int/</u>), since anyone can have access to the document mentioned coming from a legitimate source.

E.2. Summary of the comments received:

>>

The Brazilian DNA asks that the CDM projects stay obligatory open for comments before the validation. Besides the international public comments process of UNFCCC, the project will be open for comments at the same time of local interested parties. Any comments will be presented after the validation.

E.3. Report on how due account was taken of any comments received:

>>

The Brazilian DNA asks that the CDM projects stay obligatory open for comments before the validation. Besides the international public comments process of UNFCCC, the project will be open at the same time for comments of local interested parties. Any comments will be presented after the validation.

page 35

EXFCCC

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE **<u>PROJECT ACTIVITY</u>**

Organization:	C-TRADE COMERCIALIZADORA DE CARBONO LTDA.
Street/P.O.Box:	Avenida Rio Branco, nº 1, 9º andar, Bloco B (parte)
Building:	
City:	Rio de Janeiro
State/Region:	Rio de Janeiro
Postfix/ZIP:	
Country:	Brazil
Telephone:	+55 21 2114-1707
FAX:	
E-Mail:	
URL:	
Represented by:	
Title:	Lawyer
Salutation:	Sir.
Last Name:	Schmidt
Middle Name:	Guerra
First Name:	Guilherme
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	gschmidt@svmfa.com.br

page 36

Organization:	Companhia Energética Manauara
Street/P.O.Box:	Rod.AM10, km 20
Building:	
City:	Manaus
State/Region:	Amazonas
Postfix/ZIP:	69049-970
Country:	Brazil
Telephone:	+55 92 3652-9200
FAX:	
E-Mail:	
URL:	www.utemanauara.com.br
Represented by:	
Title:	Financial Director
Salutation:	Sir.
Last Name:	Pelegrini
Middle Name:	
First Name:	Osmir
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	osmirpelegrini@utemanauara.com.br

page 37

EXPORE

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

There won't be any public funding on this project activity.

page 38

Annex 3

BASELINE INFORMATION

In the next picture it's shown the Brazilians Grid. Manauara is located in the Isolated North. There is no connection to the SIN (National Integrated System) yet, the *TPP Manauara* is just connected to the Interconnected Manaus System.

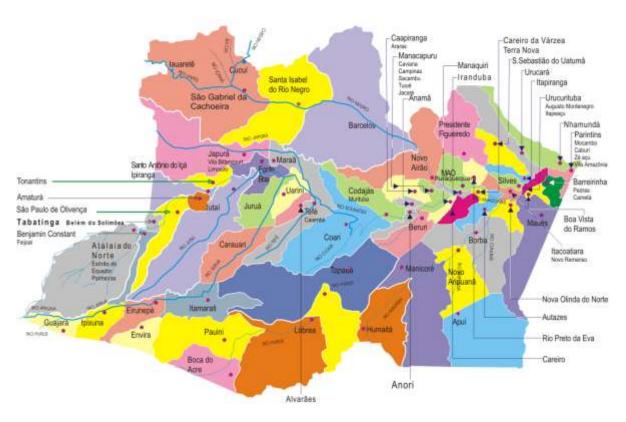
Figure 1 - National Integrated Grid and the North Isolated System

Source: ONS (www.ons.org.br)

Description of Amazonas State

STATE OF THE AMAZONAS

CEAM is the responsible Utility for the generation and electric power distribution inside the State of Amazon in 91 Isolated Systems with thermal generation, predominantly of diesel oil.


MANAUS ENERGIA is the responsible Utility for the generation, transmission and electric power distribution in the city of Manaus, besides accomplishing the supply to three places of the countryside assisted by CEAM: President Figueiredo, Puraquequara and Iranduba. Also the supply is foreseen Manacapuru starting from June/2006.

page 39

The illustration below presents the geographical distribution of the Isolated Systems of the State of Amazon.

System of Amazonas State

The Manaus System is the largest among the isolated ones Brazilian, representing 46% of the total of the market of electric power of the Isolated Systems approximately. Manaus System's foreseen own load for 2006 is of 5,587,162 MWh (637.8 MW average), corresponding to a maximum demand of 879 MW.

Configuration of the Generating Park

The Manaus System has a hydrothermal generating park with effective power of 1,264.5 MW, constituted of UHE Balbina with 250 MW and of 1,014.5 MW regarding the thermal generating units own, of the PIES El Paso, CGE, Aggreko and Breitener Energética S.A. Those 1,014.5 MW consider 40 MW rented to Aggreko even March/2006, 120 MW of the PIES Breitener and PEEP even CGE June/2006 an increment of 185 MW is foreseen regarding the entrance in operation of the thermal plants of the he/she PIES Rio Amazonas Energia (UTE Cristiano Rocha), Cia. Energética Manauara (UTE Manauara) and Serv. Tec. Facilities and Integrated Systems (UTE Ponta Negra), totaling 1,449.5 MW.


```
page 40
```

Estado	Concessionária	Nº de Uni	dades	Potência No	minal (kW
Estado	Concessionaria	2006	2007	2006	2007
ACRE	ELETRONORTE	24	24	94.407	94.407
	ELETROACRE	66	78	32.571	44.159
AMAPÁ	ELETRONORTE	39	39	178.100	168.000
AMAPA	CEA	15	13	18.045	17.645
AMAZONAS	MANAUS ENERGIA	190	91	1.692.300	1.318.600
	CEAM	451	407	298.713	287.799
DADÁ	CELPA	161	159	88.402	86.682
PARÁ	JARI CELULOSE	12	12	70.415	15.415
RONDÓNIA	ELETRONORTE	12	12	614,100	614.100
RUNDONIA	CERON	141	141	87.364	87.364
RORAIMA	BOA VISTA ENERGIA	3	3	62.000	62.000
RURAIMA	CER	84	86	24 192	26.534
BAHIA	COELBA	5	5	1.578	1.578
MARANHÃO	CEMAR	3	3	872	872
MATO GROSSO	CEMAT	231	157	121 254	65.050
PERNAMBUCO	CELPE	3	6	2.730	4.295
TOTAL PAR	RQUE TÉRMICO	1.440	1.236	3.387.043	2.894.50

Thermal Power Plants - Installed Power Capacity of the Isolated North System

Notas

 I- Foram considerados os maiores valores entre as potências autorizadas e as solicitadas, constantes do Oficio SFG/ANEEL nº 468/2006, de 06/10/2006.

2- As diferenças entre os valores de 2007 e os de 2006 devem-se, basicamente, a:

⇒ CEMAT: 5 interligações no ano de 2006 (Juara, Juina, Tabaporã, Sapezal, Aripuanã) e a integração de Cofniza ao sistema isolado de Aripuanã atendido pela PCH Faxinal II;

⇒ MANAUS ENERGIA: Desativação da UTE Mauá II e redução da potência das UTE São José, Cidade Nova e Flores;

Source: Eletrobras (www.eletrobras.gov.br)

page 41

Estado	Concessionária	Nº de Unidades		Poténcia Nominal (kW)		
	concessionana	UHE	РСН	UHE	РСН	
AMAZONAS	MANAUS ENERGIA	5		250.000		
RONDÔNIA	ELETRONORTE	5	2	216.000		
RONDONIA	CERON	-	28	-	94.774	
RORAIMA	CER	1	2	÷.	5.000	
AMAPÁ	ELETRONORTE	3		78.000	-	
MATO GROSSO	CEMAT		4		3.460	
TOTAL PARC	UE HIDRÁULICO	13	34	544.000	103.234	

Hydropower Plants - Installed Power Capacity of the Isolated North System

Source: Eletrobras (www.eletrobras.gov.br)

Forecast of Thermal Power Plants and Oil consumption by Utility for 2007

Empresa		Tipo de Oleo	Geração (MWh)	Quantidade de Óleo com Cobertura da CCC-ISOL
CEA		Diesel	78.937	22.649
CEAM		Diesel	807.365	233,757
CELPA		Diesel	348,301	99.339
CEMAT		Diesel	157.964	46,392
CER		Diesel	49,240	14.739
CERON		Diesel	237.038	67,415
ELETROACRE		Diesel	182.013	50.675
	P.Velho	Diesel	248,591	62.078
the strategy of a second second second	P.Veiho	PTE	1.072.958	403.765
ELETRONORTE	R. Branco	Diesel	8.760	2.865
	Macapa	Diesel	521.031	141.387
		PTE	424.230	133.541
		PGE	1.117.557	223.997
MANAUS ENERGIA		Combustivel	530.438	165.884
		Diesel	287.533	80.578
PIE BREITENER UTE Tambagui		Combustivel	516.665	107.466
PIE BREITENER UTE Jaraqui		Combustivel	516.665	107.466
PIE RIO AMAZONAS UTE C. Rocha		Combustivel	559.720	116.982
PIE MANAUARA UTE Manauara		Combustivel	516.665	107.983
PIE GERA UTE Ponta Negra		Combustivel	516.665	108 500
CELPE		Diesel	11.198	3.254
CEMAR		Diesel	486	146
COELBA		Diesel	834	250
JARI CELULOSE		Diesel	18.574	5.425
and occords		Combustivel	6.721	2.554
		Diesel	2.957.865	830.948
TOTAL		PTE	1.497.188	537.306
TOTAL		PGE	1 117.557	223.997
		Combustivel	3.163.539	716.835
TOTAL DE GE	RACÃO TERM	IICA	8,736,149	

Geração Térmica e Consumo de Óleo por Empresa com Cobertura da CCC-ISOL para 2007

Nota: Diesel e PTE em 1000 I, PGE e Combustivel em toneladas.

Source: Eletrobras (www.eletrobras.gov.br)

page 42

<u>2003</u>									
	Hidráulica	82,7 MW médios							
	Hidraulica	Empresa	sa UHE		Previsão de Geração				
		MANAUS ENERGIA	BALBIN	Ą	82,7 MW médios				
			428,8 M	W médio	S				
		Empresa	UTE		Previsão de Geração				
Previsão de			APARECIDA		67,5 MW médios				
Geração		Manaus Energia	MAUÁ		49,9 MW médios				
	Térmica		ELECTRON		17,5 MW médios				
			Planta A		27,1 MW médios				
		PIE EL PASO	Planta B		80,2 MW médios				
			Planta D		66,3 MW médios				
		PIE RIO NEGRO	WÄRTSILÄ		120,1 MW médios				
		384.581 toneladas							
	Combustivel	EMPRESA	UTE	TIPO	PREVISÃO DE CONSUMO				
	Combustiver	MANAUS ENERGIA	MAUÁ	OC1A	153.115 toneladas				
		PIE RIO NEGRO	WÄRTSILÄ	PGE	231.466 toneladas				
Previsão de		826.022 mil litros							
Consumo de Óleo		Empresa	UTE	TIPO	PREVISÃO DE CONSUMO				
Oleo		MANAUS ENERGIA	APARECIDA	PTE	207.010 mil litros				
	Leve	MANA03 ENERGIA	ELECTRON	PTE	58.302 mil litros				
			Planta A	PTE	90.299 mil litros				
		PIE EL PASO	Planta B	PTE	267.135 mil litros				
			Planta D	PTE	203.276 mil litros				

Historical of Fuel Consumption and Generated Energy

page 43

EXFCCC

			100,1 M	W médio				
	Hidráulica	Empresa	UHE		Previsão de Geração			
		MANAUS ENERGIA	BALBINA		100,1			
		440,5 MW médios						
		Empresa	UTE		Previsão de Geração			
			APARECIDA		40,6			
Previsão de Geração		MANAUS ENERGIA	MAUÁ		65.5			
(MW médio)			ELECTRON		10,0			
	Termica		PLANTA A		30,0			
		PIE EL PASO	PLANTA B		81,2			
		THE CE I HOU	PLANTA D		60,0			
			WÅRTSILÅ		120,9			
		PIE CGE	UTE CIDADE NOVA		6,8			
		1.000	UTE SÃO JOSÉ		25,5			
			412.7951	oneladas				
	Pesado	Empresa	UTE	TIPO	PREVISÃO DE CONSUM			
	(toneladas)	MANAUS ENERGIA	MAUĂ	COMB.	189.833			
		PIE EL PASO	WARTSILA	PGE	222.962			
			776.774	mil litros				
		Empresa	UTE	TIPO	PREVISÃO DE CONSUM			
Previsão de Consumo de Óleo		MANAUS ENERGIA	APARECIDA	PTE	121.277			
	Leve		ELECTRON	PTE	33.379			
	(mil litros)		PLANTA A	PTE	100.138			
		PIE EL PASO	PLANTA 8	PTE	271.047			
			PLANTA D	PTE	168.653			
		PIE CGE	UTE C. NOVA	DIESEL	17.322			
			UTE SÃO JOSÉ	DIESEL	64.958			


```
page 44
```

			86,6 MV	V médio			
		Empresa UHE			Previsão de Geração		
		MANAUS ENERGIA	BALBINA		86,6		
		Empresa	Empresa UTE		Previsão de Geração		
			APARECIDA		83,5		
20020020020	10010233	MANAUS ENERGIA	MAUÁ		65,5		
Previsão de Geração (MW médio)	Hidráulica Térmica		ELECTRON		2,0		
(www.medio)	Termica		PLANTA A		25,7		
		PIE EL PASO	PLANTA B		88,6		
		THE EL PROV	PLANTA D		63,4		
			WARTSILÄ		127,6		
		PIE CGE	UTE CIDADE NOVA		6,7		
			UTE SÃO JOSÉ		16,7		
			UTE FLORES		29,8		
			418.337 1	oneladas			
	Pesado	Empresa	UTE	TIPO	PREVISÃO DE CONSUMO		
	(toneladas)	MANAUS ENERGIA	MAUÁ	COMB	189.23		
		PIE EL PASO	WARTSILA	PGE	229.09		
		913.630 mil litros					
		Empresa	UTE	TIPO	PREVISÃO DE CONSUMO		
Previsão de Corisumo		MANAUS ENERGIA	APARECIDA	PTE	234.153		
de Óleo		INNINGS ENERGIN	ELECTRON	PTE	6.796		
	Leve		PLANTA A	PTE	85.561		
	(mil litros)	PIE EL PASO	PLANTA B	PTE	294.861		
			PLANTA D	PTE	166.510		
			UTE C. NOVA	DIESEL	15.768		
		PIE CGE	UTE SÃO JOSÉ	DIESEL	39.420		
			FLORES	DIESEL	70.562		

page 45

Assumptions: Data from IPCC

	DEFAU	LT EMISSION F/ (kg of	ACTORS FOR S f greenhouse		OMBUSTION			STRIES		
CO2 CH4 N2O										
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Crud	le Oil	73 300	71 100	75 500	r 3	1	10	0.6	0.2	2
Orin	nulsion	r 77 000	69 300	85 400	r 3	1	10	0.6	0.2	2
Natu	ral Gas Liquids	r 64 200	58 300	70 400	r 3	1	10	0.6	0.2	2
	Motor Gasoline	r 69 300	67 500	73 000	r 3	1	10	0.6	0.2	2
Gasoline	Aviation Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Gast	Jet Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Jet K	lerosene	r 71500	69 700	74 400	r 3	1	10	0.6	0.2	2
Othe	r Kerosene	71 900	70 800	73 700	r 3	1	10	0.6	0.2	2
Shal	e Oil	73 300	67 800	79 200	r 3	1	10	0.6	0.2	2
Gas/	Diesel Oil	74 100	72 600	74 800	r 3	1	10	0.6	0.2	2
Resi	dual Fuel Oil	77 400	75 500	78 800	r 3	1	10	0.6	0.2	2
Liqu	efied Petroleum Gases	63 100	61 600	65 600	r 1	0.3	3	0.1	0.03	0.3
Etha	ne	61 600	56 500	68 600	r 1	0.3	3	0.1	0.03	0.3
Naphtha		73 300	69 300	76 300	r 3	1	10	0.6	0.2	2
Bitumen		80 700	73 000	89 900	r 3	1	10	0.6	0.2	2
Lubricants		73 300	71 900	75 200	r 3	1	10	0.6	0.2	2
Petroleum Coke		r 97 500	82 900	115 000	r 3	1	10	0.6	0.2	2
	nery Feedstocks	73 300	68 900	76 600	r 3	1	10	0.6	0.2	2
	Refinery Gas	n 57 600	48 200	69 000	r 1	0.3	3	0.1	0.03	0.3
	Paraffin Waxes	73 300	72 200	74 400	r 3	1	10	0.6	0.05	2
3	White Spirit and SBP	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
Other	Other Petroleum Products	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
-	racite	98 300	94 600	101 000	1 1	0.3	3	r 1.5	0.5	5
	ing Coal	98 500	94 000 87 300	101 000	1	0.3	3	r 1.5	0.5	5
	r Bituminous Coal	94 600	89 500	99 700	1	0.3	3	r 1.5	0.5	5
	Bituminous Coal	94 000	92 800	100 000	1	0.3	3		0.5	5
Lign		101 000	90 900	115 000	1	0.3	3	r 1.5	0.5	5
	Shale and Tar Sands	107 000	90 200	125 000	1	0.3	3	r 1.5	0.5	5
	vn Coal Briquettes	97 500	87 300	109 000	n 1	0.3	3	r 1.5	0.5	5
Pater	t Fuel Coke Oven Coke and	97 500 r 107 000	87 300 95 700	109 000 119 000	1	0.3	3	n 1.5 r 1.5	0.5	5
Coke	Lignite Coke									
	Gas Coke	r 107 000	95 700	119 000	r 1	0.3	3	0.1	0.03	0.3
Coal	1	n 80700	68 200	95 300	n 1	0.3	3	r 1.5	0.5	5
8	Gas Works Gas	n 44 400	37 300	54 100	n 1	0.3	3	0.1	0.03	0.3
1Gas	Coke Oven Gas	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3
Derived Gases	Blast Furnace Gas	n 260 000	219 000	308 000	r 1	0.3	3	0.1	0.03	0.3
ã	Oxygen Steel Furnace Gas	n 182 000	145 000	202 000	r 1	0.3	3	0.1	0.03	0.3
Natu	ral Gas	56 100	54 300	58 300	1	0.3	3	0.1	0.03	0.3

NCV and Conversion Units: Data from MME (Brazilian Mines and Energy Ministry)

Tabela 36 :: Densidades e Poderes Caloríficos Inferiores

Fontes	Densidade kg/m³ 1	Poder Calorífico Inferior kcal/kg	Fontes	Densidade kg/m³ 1	Poder Calorífico Inferior kcal/kg
Petróleo ²	874	10.200	Óleo Combustível	1.000	9.590
Gás Natural Úmido ³	-	9.930	Gasolina Automotiva	740	10.400
Gás Natural Seco³	-	8.800	Gasolina de Aviação	720	10.600
Carvão Vapor			Gás Liquefeito de Petróleo	550	11.100
3.100 kcal/kg	-	2.950	Nafta	720	10.630
3.300 kcal/kg	-	3.100	Querosene lluminante	790	10.400
3.700 kcal/kg	-	3.500	Querosene de Avião	790	10.400
4.200 kcal/kg	-	4.000	Gás de Coqueria ²	-	4.300
4.500 kcal/kg	-	4.250	Gás Canalizado Rio de Janeiro ²	-	3.800
4.700 kcal/kg	-	4.450	Gás Canalizado São Paulo ²	-	4.500
5.200 kcal/kg	-	4.900	Coque de Carvão Mineral	-	6.900
5.900 kcal/kg	-	5.600	Eletricidade ⁴	-	860
6.000 kcal/kg	-	5.700	Carvão Vegetal	250	6.460
Carvão Vapor sem Especificação	-	2.850	Álcool Etílico Anidro	791	6.750
Carvão Metalúrgico Nacional	-	6.420	Álcool Etílico Hidratado	809	6.300
Carvão Metalúrgico Importado	-	7.400	Gás de Refinaria	780	8.400
Energia Hidráulica⁴	-	860	Coque de Petróleo	1.041	8.390
Lenha Catada	300	3.100	Outros Energéticos de Petróleo	872	10.200
Lenha Comercial	390	3.100	Outras Secundárias — Alcatrão	-	8.550
Caldo de Cana	-	623	Asfaltos	1.040	9.790
Melaço	-	1.850	Lubrificantes	880	10.120
Bagaço de Cana⁵	-	2.130	Solventes	740	10.550
Lixívia	-	2.860	Outros Não-energéticos de	873	10.200
Óleo Diesel	840	10.100	Petróleo		

⁷ A temperatura de 20° C, para os derivados de petróleo e de gás natural.
 ² Poder calorífico inferior médio do petróleo nacional. Para poder calorífico do petróleo de referência para tep, ver Apêndice C.1.2.
 ³ kcal/m³
 ⁴ kcal/kWh
 ⁵ Rogaço com 50% do umido do

⁵ Bagaço com 50% de umidade.

EPE Empresa de Pesquisa Energética

page 47

CDM – Executive Board

C.3 Fatores de Conversão

Tabela 34 :: Fatores de Conversão para Energia

	Para	J	BTU	cal	kWh
			Multiplicar por		
	Joule (J)	1,0	947,8 x 10-⁵	0,23884	277,7 x 10 ^{.9}
	BTU	1,055 x 10³	1,0	252,0	293,07 x 10-6
	calorias (cal)	4,1868	3,968 x 10-3	1,0	1,163 x 10 [.] €
De	quilowatt-hora (kWh)	3,6 x 106	3412,0	860,0 x 10 ³	1,0
	tep	41,87 x 10 ⁹	39,68 x 10 [∈]	10,0 x 10°	11,63 x 10³
	bep	5,95 x 10º	5,63 x 10 ⁶	1,42 x 10 ⁹	1,65 x 10³

MME Ministério de Minas e Energia

page 48

Annex 4

MONITORING INFORMATION

Please see the information in the item B.7.2. No extra information is necessary.

- - - - -